Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.14.21249690

ABSTRACT

The emergence and rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of varying lengths and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multi-coronavirus arrays to identify specific antibody reactivity. High level IgG, IgM and IgA reactivity to structural proteins S, M and N, as well as accessory proteins, of SARS-CoV-2 were observed that was specific to COVID-19 patients. Overlapping 100, 50 and 30 amino acid fragments of SARS-CoV-2 proteins identified antigenic regions. Numerous proteins of SARS-CoV, MERS-CoV and the endemic human coronaviruses, HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.12.21249702

ABSTRACT

We sought to discover links between antibody responses to SARS-CoV-2 and patient clinical variables, cytokine profiles and antibodies to endemic coronaviruses. Serum from patients of varying ages and clinical severity were collected and used to probe a novel multi-coronavirus protein microarray containing SARS-CoV-2 proteins and overlapping protein fragments of varying length as well as SARS-CoV, MERS-CoV, HCoV-OC43 and HCoV-NL63 proteins. IgG, IgA and IgM antibody responses to specific epitopes within the spike (S), nucleocapsid (N) and membrane proteins (M) were higher in older adult patients. Moreover, the older age group displayed more consistent correlations of antibody reactivity with systemic cytokine and chemokine responses when compared to the younger adult group. A subset of patients, however, had little or no response to SARS-CoV-2 antigens and disproportionately severe clinical outcomes. Further characterization of these serosilent individuals with cytokine analysis revealed significant differences in IL-10, IL-15, IP-10, EGF and sCD40L levels when compared to seroreactive patients in the cohort.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL